Objectives: To assess methods to improve the accuracy of prognosis for clinical stage I solid lung adenocarcinoma using radiomics based on different volumes of interests (VOIs).
Methods: This retrospective study included patients with postoperative clinical stage I solid lung adenocarcinoma from two hospitals, center 1 and center 2. Three databases were generated: dataset A (training set from center 1), dataset B (internal test set from center 1), and dataset C (external validation test from center 2). Disease-free survival (DFS) data were collected. CT radiomics models were constructed based on four VOIs: gross tumor volume (GTV), 3 mm external to the tumor border (peritumoral volume [PTV]0~+3), 6 mm crossing tumor border (PTV-3~+3), and 6 mm external to the tumor border (PTV0~+6). The area under the receiver operating characteristic curve (AUC) was used to compare the model accuracies.
Results: A total of 334 patients were included (204 and 130 from centers 1 and 2). The model using PTV-3~+3 (AUC 0.81 [95% confidence interval {CI}: 0.75, 0.94], 0.81 [0.63, 0.90] for datasets B and C) outperformed the other three models, GTV (0.73 [0.58, 0.81], 0.73 [0.58, 0.83]), PTV0~+3 (0.76 [0.52, 0.87], 0.75 [0.60, 0.83]), and PTV0~+6 (0.72 [0.60, 0.81], 0.69 [0.59, 0.81]), in datasets B and C, all p < 0.05.
Conclusions: A radiomics model based on a VOI of 6 mm crossing tumor border more accurately predicts prognosis of clinical stage I solid lung adenocarcinoma than that based on VOIs including overall tumor or external rims of 3 mm and 6 mm.
Key points: • Radiomics is a useful approach to improve the accuracy of prognosis for stage I solid adenocarcinoma. • The radiomics model based on VOIs that includes 3 mm within and external to the tumor border (peritumoral volume [PTV]-3~+3) outperformed models that included either only the tumor itself or those that only included the peritumoral volume.
Keywords: Adenocarcinoma; Lung; Peritumoral; Prognosis; Radiomics.
© 2021. European Society of Radiology.