Antiresonant Hollow-Core Fibers (ARHCFs), thanks to the excellent capability of guiding light in an air core with low loss over a very broad spectral range, have attracted significant attention of researchers worldwide who especially focus their work on laser-based spectroscopy of gaseous substances. It was shown that the ARHCFs can be used as low-volume, non-complex, and versatile gas absorption cells forming the sensing path length in the sensor, thus serving as a promising alternative to commonly used bulk optics-based configurations. The ARHCF-aided sensors proved to deliver high sensitivity and long-term stability, which justifies their suitability for this particular application. In this review, the recent progress in laser-based gas sensors aided with ARHCFs combined with various laser-based spectroscopy techniques is discussed and summarized.
Keywords: antiresonant hollow core fibers; fiber gas sensors; laser spectroscopy; photoacoustic spectroscopy; photothermal spectroscopy; tunable diode laser absorption spectroscopy; wavelength modulation spectroscopy.