Partitioning Entropy with Action Mechanics: Predicting Chemical Reaction Rates and Gaseous Equilibria of Reactions of Hydrogen from Molecular Properties

Entropy (Basel). 2021 Aug 16;23(8):1056. doi: 10.3390/e23081056.

Abstract

Our intention is to provide easy methods for estimating entropy and chemical potentials for gas phase reactions. Clausius' virial theorem set a basis for relating kinetic energy in a body of independent material particles to its potential energy, pointing to their complementary role with respect to the second law of maximum entropy. Based on this partitioning of thermal energy as sensible heat and also as a latent heat or field potential energy, in action mechanics we express the entropy of ideal gases as a capacity factor for enthalpy plus the configurational work to sustain the relative translational, rotational, and vibrational action. This yields algorithms for estimating chemical reaction rates and positions of equilibrium. All properties of state including entropy, work potential as Helmholtz and Gibbs energies, and activated transition state reaction rates can be estimated, using easily accessible molecular properties, such as atomic weights, bond lengths, moments of inertia, and vibrational frequencies. We conclude that the large molecular size of many enzymes may catalyze reaction rates because of their large radial inertia as colloidal particles, maximising action states by impulsive collisions. Understanding how Clausius' virial theorem justifies partitioning between thermal and statistical properties of entropy, yielding a more complete view of the second law's evolutionary nature and the principle of maximum entropy. The ease of performing these operations is illustrated with three important chemical gas phase reactions: the reversible dissociation of hydrogen molecules, lysis of water to hydrogen and oxygen, and the reversible formation of ammonia from nitrogen and hydrogen. Employing the ergal also introduced by Clausius to define the reversible internal work overcoming molecular interactions plus the configurational work of change in Gibbs energy, often neglected; this may provide a practical guide for managing industrial processes and risk in climate change at the global scale. The concepts developed should also have value as novel methods for the instruction of senior students.

Keywords: Gibbs energy; Haber process; Helmholtz energy; enthalpy; entropy; equilibrium; ergal; free energy; hydrogen dissociation; transition state; virial theorem; water dissociation.