Background: Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown.
Objectives: We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics.
Discussion: The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome-the totality of the biologically active exposures relevant to disease development-through coupling biochemical receptor-binding assays with affinity purification-mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conventional targeted and untargeted approaches for understanding exposure-disease relationships.
Conclusions: Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327.