Persimmon is among the fruits with a significant postharvest loss over the last few years. Thus, it is important to investigate new technical feasibilities to obtain products with higher added value from this fruit. In this study persimmon puree films (Diospyros kaki L.) incorporated with glycerol and pectin by casting technique were formulated using a Plackett-Burman design and characterized. The puree showed high carbohydrate content (175.70 g/kg). In descending order, fructose, glucose, and maltohexaose were the sugars found in persimmon. All the independent variables studied-puree concentration, pectin, glycerol, and temperature-statistically influenced the tensile strength (0.75-1.30 MPa), elongation at break (17.69-26.02%), and Young's modulus (3.34-10.94 MPa) of the films. Water solubility ranged from 68.80% to 80.86%, which were very similar to other films based on puree fruit in the literature. Samples presented high vapor permeability (5.77-6.63 × 10-6 g/h/m/Pa) when compared to biodegradable films. Scanning electron microscopy showed smooth surfaces and good plasticizer dispersion. The colorimetric coordinates indicated the films are reddish and yellowish, giving them an orange-ish visual aspect. The films exhibited antimicrobial activity, especially against Escherichia coli and Staphylococcus aureus. These results indicate that the developed films might be a good candidate for antimicrobial food packaging improving food quality and safety. PRACTICAL APPLICATION: The production of fruit-film packaging with functional and biodegradable characteristics might reduce postharvest loss of fruit and have the potential to develop active food packaging. In this sense, this study is in line with precepts of the circular economy, once it takes advantage of exceeded resources that would be discarded by generating biodegradable films which can be used as edible packaging. Furthermore, given the antimicrobial potential of the films developed, they might be applied as active packaging to improve food safety and extend shelf life.
Keywords: active packaging; antimicrobial; biodegradable plastics; circular economy; mechanical properties.
© 2021 Institute of Food Technologists®.