Organic persistent luminescent materials have attracted special attention due to their significant applications in optoelectronics, sensors, and security technology areas. In this work, a series of organic compounds (1-4) with twisted electron donor-acceptor structures are successfully designed and synthesized, and then the resultant compounds are dissolved in methyl methacrylate (MMA), and afterward, in situ polymerization realizes single-molecular organic room-temperature phosphorescent (RTP) materials (P1-P4). All RTP materials show long lifetime, especially P2 exhibits ultralong lifetime of 1.51 s. When the compounds are grown into single crystals, multicolor-tunable afterglow is obtained at different delay times due to the dual emission of phosphorescence and delayed fluorescence, which is promising to be applied in high-level anticounterfeiting.
Keywords: color-tunable; delay fluorescence; organic persistent luminescence; single-molecular room-temperature phosphorescence; ultralong organic room-temperature phosphorescence.