Preterm birth (PTB) is a leading global cause of infant mortality. Risk factors include genetics, lifestyle choices and infection. Understanding the mechanism of PTB could aid the development of novel approaches to prevent PTB. This study aimed to investigate the metabolic biomarkers of PTB in early pregnancy and the association of significant metabolites with participant genotypes. Maternal sera collected at 16 and 20 weeks of gestation, from women who previously experienced PTB (high-risk) and women who did not (low-risk controls), were analysed using 1H nuclear magnetic resonance (NMR) metabolomics and genome-wide screening microarray. ANOVA and probabilistic neural network (PNN) modelling were performed on the spectral bins. Metabolomics genome-wide association (MGWAS) of the spectral bins and genotype data from the same participants was applied to determine potential metabolite-gene pathways. Phenylalanine, acetate and lactate metabolite differences between PTB cases and controls were obtained by ANOVA and PNN showed strong prediction at week 20 (AUC = 0.89). MGWAS identified several metabolite bins with strong genetic associations. Cis-eQTL analysis highlighted TRAF1 (involved in the inflammatory pathway) local to a non-coding SNP associated with lactate at week 20 of gestation. MGWAS of a well-defined cohort of participants highlighted a lactate-TRAF1 relationship that could potentially contribute to PTB.
Keywords: NMR; Preterm birth; biomarker discovery; mGWAS; metabolomics; multiple omics.
© 2021 The Author(s).