Objective: To explore the relationship between spinal cord compression and hypertension through analysis of blood pressure (BP) variations in a cervical spondylotic myelopathy (CSM) cohort after surgical decompression, along with a review of the literature.
Methods: A single-institution retrospective review of patients with CSM who underwent cervical decompression between 2016 and 2017 was conducted. Baseline clinical and imaging characteristics, preoperative and postoperative BP readings, heart rate, functional status, and pain scores were collected. In addition, a PRISMA guidelines-based systematic review was performed.
Results: We identified 264 patients with CSM treated surgically; 149 (56.4%) of these had hypertension. The degree of spinal canal compromise and spinal cord compression, preoperative neurologic examination, and the presence of T2-signal hyperintensity on magnetic resonance imaging were associated with hypertension. Overall mean arterial pressure (MAP) decreased significantly at 1 and 12 months after surgery. Patients without T2-signal hyperintensity on imaging showed a MAP reduction at 12 months postoperatively, whereas those with T2-signal hyperintensity showed a transient MAP reduction at 1 month postoperatively before returning to preoperative values. At 12 months after surgery, 24 of 97 patients (24.7%) with initially uncontrolled hypertension had controlled BP values with significant reduction of MAP, systolic BP, and diastolic BP. Including the present study, 5 articles were eligible for systematic review, with all reporting a BP decrease in patients with CSM after decompression.
Conclusions: Analysis of our retrospective cohort and a systematic review suggest that cervical surgical decompression reduces BP in some patients with CSM. However, this improvement is less apparent in patients with preoperative spinal cord T2-signal hyperintensity.
Keywords: Cervical spondylotic myelopathy; Cervical surgical decompression; Hypertension; Nontraumatic spinal cord injury; Spinal cord compression; T2-signal hyperintensity.
Copyright © 2021 Elsevier Inc. All rights reserved.