Covalent organic frameworks (COFs) with well-defined supramolecular structures and high surface-area-to-volume ratio have received extensive attention on their adsorption of contaminants from micro- to nano-size. Here, we studied the adsorption mechanisms of three typical nanoplastics (NP), including polyethylene (PE), nylon-6 (PA 6), and polyethylene terephthalate (PET) on chemically stable COFs (TpPa-X, X = H, CH3, OH, NO2 and F) by molecular dynamics simulations. Depending on molecular structure and surface composition, two distinct interactions-electrostatic interaction and van der Waals (vdW) interaction-are identified to be responsible for the adsorption of different NP pollutants on TpPa-X. The vdW interaction is dominant during the adsorption process, while polar groups in polymers and COFs can enhance the adsorption because of the electrostatic interaction. Compared with other functional COFs, we found that TpPa-OH shows the strongest adsorption with the NP pollutants employed in this study. This work reveals the COF-polymer adsorption behavior and properties at atomic scale, which is crucial to the development of promising COF materials to deal with NP pollution.
Keywords: Adsorbents; Covalent organic frameworks; Molecular dynamics simulation; Nanoplastics.
Copyright © 2021 Elsevier B.V. All rights reserved.