Representing words as numerical vectors based on the contexts in which they appear has become the de facto method of analyzing text with machine learning. In this paper, we provide a guide for training these representations on clinical text data, using a survey of relevant research. Specifically, we discuss different types of word representations, clinical text corpora, available pre-trained clinical word vector embeddings, intrinsic and extrinsic evaluation, applications, and limitations of these approaches. This work can be used as a blueprint for clinicians and healthcare workers who may want to incorporate clinical text features in their own models and applications.
Keywords: Clinical data; Natural language processing; Word embeddings.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.