Long-Term Safety and Tolerability of BMP7 and HGF Gene Overexpression in Rabbit Cornea

Transl Vis Sci Technol. 2021 Aug 12;10(10):6. doi: 10.1167/tvst.10.10.6.

Abstract

Purpose: Tissue-targeted localized BMP7+HGF genes delivered into the stroma via nanoparticle effectively treats corneal fibrosis and rehabilitates transparency in vivo without acute toxicity. This study evaluated the long-term safety and tolerability of BMP7+HGF nanomedicine for the eye in vivo.

Methods: One eye each of 36 rabbits received balanced salt solution (group 1, naïve; n = 12), naked vector with polyethylenimine-conjugated gold nanoparticles (PEI2-GNP; group 2, naked-vector; n = 12), or BMP7+HGF genes with PEI2-GNP (group 3, BMP7+HGF; n = 12) via a topical delivery technique. Safety and tolerability measurements were performed by clinical biomicroscopy in live rabbits at predetermined time intervals up to 7 months. Corneal tissues were collected at 2 months and 7 months after treatment and subjected to histology, immunofluorescence, and quantitative real-time PCR analyses.

Results: Clinical ophthalmic examinations and modified MacDonald-Shadduck scores showed no significant changes in corneal thickness (P = 0.3389), tear flow (P = 0.2121), intraocular pressure (P = 0.9958), epithelial abrasion, or ocular abnormality. Slit-lamp, stereo, confocal, and specular biomicroscopy showed no signs of blepharospasm chemosis, erythema, epiphora, abnormal ocular discharge, or changes in epithelium, stroma, and endothelium after BMP7+HGF therapy for up to 7 months, as compared with control groups. Throughout the 7-month period, no significant changes were recorded in endothelial density (P = 0.9581). Histological and molecular data were well corroborated with the subjective clinical analyses and showed no differences in the naïve, naked-vector, and BMP7+HGF groups.

Conclusions: Localized BMP7+HGF therapy is a safe, tolerable, and innovative modality for the treatment of corneal fibrosis.

Translational relevance: Nanoparticle-mediated BMP7+HGF combination gene therapy has the potential to treat corneal fibrosis in vivo without short- or long-term toxicity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cornea
  • Corneal Diseases*
  • Gold
  • Metal Nanoparticles*
  • Rabbits
  • Tonometry, Ocular

Substances

  • Gold