Background: University students have higher average number of contacts than the general population. Students returning to university campuses may exacerbate COVID-19 dynamics in the surrounding community.
Methods: We developed a dynamic transmission model of COVID-19 in a mid-sized city currently experiencing a low infection rate. We evaluated the impact of 20,000 university students arriving on September 1 in terms of cumulative COVID-19 infections, time to peak infections, and the timing and peak level of critical care occupancy. We also considered how these impacts might be mitigated through screening interventions targeted to students.
Results: If arriving students reduce their contacts by 40% compared to pre-COVID levels, the total number of infections in the community increases by 115% (from 3,515 to 7,551), with 70% of the incremental infections occurring in the general population, and an incremental 19 COVID-19 deaths. Screening students every 5 days reduces the number of infections attributable to the student population by 42% and the total COVID-19 deaths by 8. One-time mass screening of students prevents fewer infections than 5-day screening, but is more efficient, requiring 196 tests needed to avert one infection instead of 237.
Interpretation: University students are highly inter-connected with the surrounding off-campus community. Screening targeted at this population provides significant public health benefits to the community through averted infections, critical care admissions, and COVID-19 deaths.