Red Bean Pod Derived Heterostructure Carbon Decorated with Hollow Mixed Transition Metals as a Bifunctional Catalyst in Zn-Air Batteries

Chem Asian J. 2021 Sep 1;16(17):2559-2567. doi: 10.1002/asia.202100702. Epub 2021 Aug 12.

Abstract

Design and synthesis of low-cost and efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in Zn-air batteries are essential and challenging. We report a facile method to synthesize heterostructure carbon consisting of graphitic and amorphous carbon derived from the agricultural waste of red bean pods. The heterostructure carbon possesses a large surface area of 625.5 m2 g-1 , showing ORR onset potential of 0.89 V vs. RHE and OER overpotential of 470 mV at 5 mA cm-2 . Introducing hollow FeCo nanoparticles and nitrogen dopant improves the bifunctional catalytic activity of the carbon, delivering ORR onset potential of 0.93 V vs. RHE and OER overpotential of 360 mV. Electron energy-loss spectroscopy (EELS) O K-edge map suggests the presence of localized oxygen on the FeCo nanoparticles, suggesting the oxidation of the nanoparticles. Zn-air battery with these carbon-based catalysts exhibits a peak power density as high as 116.2 mW cm-2 and stable cycling performance over 210 discharge/charge cycles. This work contributes to the advancement of bifunctional oxygen electrocatalysts while converting agricultural waste into value-added material.

Keywords: Biomass-derived carbon; FeCo; electrocatalysis; metal-air batteries; non-precious metal catalyst.