A series of novel tetradentate Pt(II) and Pd(II) complexes containing fused 6/6/6 or 6/6/5 metallocycles employing azacarbazolylcarbazole (ACzCz)-based ligands was developed. Systematic experimental and theoretical studies suggest that both the ligand structures and the central metal ions have great influences on the electrochemical and photophysical properties of the complexes. The time-dependent density functional theory (TD-DFT) calculations and natural transition orbital (NTO) analyses reveal that the Pt(II) complexes possess 10.8-15.2% metal-to-ligand charge transfer (3MLCT) mixed with ligand-centered (3LC) characters, by contrast, the Pd(II) complexes exhibit significantly decreased 4.2-7.1% 3MLCT characters and enhanced 3LC compositions. All of the Pt(II) and Pd(II) complexes possess various channels for the intersystem crossing (ISC) on the basis of small energy gaps ΔES1-Tn and matching transition orbital compositions; moreover, Pd(ACzCz-1) and Pd(ACzCz-2) also possess efficient reverse intersystem crossing (RISC) to show both delayed fluorescence (DF) and phosphorescence in PMMA films at room temperature (RT). Pt(ACzCz-3) has ΦPL values of 57% with a τ of 5.1 μs in dichloromethane at RT and 50% with 3.9 μs in PMMA at RT. Notably, Pd(ACzCz-1) exhibits ultralong low-temperature phosphorescence with a τ of 1307 μs. Pt(ACzCz-2)-based green OLED employing 26mCPy as the host demonstrated a peak EQE of 8.2% and a Lmax of 24065 cd/m2.