Background: Currently, the thoracic endovascular aortic repair is the recommended clinical treatment for type B aortic dissections. Unfortunately, malperfusion or ischemia of the kidneys is a major complication of type B aortic dissections. Despite this, few studies have focused on the effects of thoracic endovascular aortic repair on blood flow in renal arteries and parenchyma. This current investigation used novel real-time imaging software to quantitatively analyze the hemodynamic changes in renal artery blood flow and perfusion before and after stent graft placement.
Methods: A total of 51 patients with type B aortic dissection undergoing thoracic endovascular aortic repair between April 2017 and September 2019 were retrospectively recruited. The pre-and post-procedural digital subtraction angiography images were converted into color-coded maps using syngo iFlow for quantitative comparison. Time-intensity curves and related parameters, including the average peak ratio (avg.Pr), average delayed time to peak (avg.dTTP), and average area under the curve ratio (avg.AUCr) of the renal arteries and renal cortex were obtained and analyzed. Wilcoxon signed-rank test was used to compare iFlow parameters before and after endovascular repair. Spearman correlation analyses were performed to study iFlow parameters and renal function parameters and the estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN).
Results: A total of 102 images including 51 pre-operative and 51 post-operative image datasets were successfully post-processed. Following endovascular repair, syngo iFlow showed a significant 33.0% increase in avg.Pr (P<0.001) and a significant 35.1% increase in avg.AUCr (P<0.001) in the renal artery. Additionally, there was a significant 12.2% decrease in the avg.dTTP (P=0.001), a significant 24.5% increase in avg.Pr (P=0.004), and a significant 38.3% increase in avg.AUCr (P=0.009) in the renal cortex. Spearman correlation analysis showed that after endovascular repair there was a significant correlation between the avg.Pr of the renal artery and eGFR (r=0.30; P=0.0349), the avg.Pr of the renal cortex and eGFR (r=0.30; P=0.0300), and the avg. AUCr of the renal cortex and BUN (r=0.31; P=0.0289).
Conclusions: syngo iFlow provided a novel quantitative method for evaluating renal hemodynamic changes in patients with type B aortic dissection undergoing endovascular treatment. Time-intensity curve parameters may facilitate the intraprocedural evaluation of renal blood flow and perfusion to complement the color-coded map.
Keywords: Thoracic endovascular aortic repair (TEVAR); renal blood flow; renal parenchymal perfusion; syngo iFlow; type B aortic dissection (TBAD).
2021 Quantitative Imaging in Medicine and Surgery. All rights reserved.