Slight induction and strong inhibition of Heterodera glycines hatching by short-chain molecules released by different plant species

J Nematol. 2021 Jul 30:53:e2021-71. doi: 10.21307/jofnem-2021-071. eCollection 2021.

Abstract

New management tools are necessary to reduce the damage caused by the soybean cyst nematode (SCN), Heterodera glycines. Identification of molecules that can stimulate second-stage juveniles (J2) hatching in an environment without food may contribute to that. In in vitro experiments, we evaluate the effect of volatile organic compounds (VOCs) released by soybean (Glycine max), bean (Phaseolus vulgaris), ryegrass (Lolium multiflorum), and alfalfa (Medicago sativa) on H. glycines egg hatching. VOCs released by all plant species significantly (p < 0.05) increased egg hatching. Short-chain molecules released by leaves and roots of soybean and bean increased the hatching up to 71.4%. The analysis of the volatilome done by gas chromatography coupled with mass spectrometry revealed 44 compounds in the plant emissions. Four of them, namely 3-octanol, 1-hexanol, hexanal and linalool were tested individually as hatching inductors. Under concentrations of 200, 600, and 1,000 µg/ml there was no hatching induction of H. glycines J2 by these compounds. On the other hand, in these concentrations, the compounds 3-octanol and 1-hexanol caused hatching reduction with values similar to the commercial nematicide carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methyl carbamate). In subsequent tests, the compounds 1-hexanol and 3-octanol showed lethal concentration values required to kill 50% of thenematode population (LC50) of 210 and 228 µg/ml, respectively, in the first experiment and, 230 and 124 µg/mlin the second one. Although we have not identified any molecules acting as hatching factor (HF), here we present a list (44 candidate molecules) that can be explored in future studies to find an efficient HF.

Keywords: Ecology; Glycine max; Hatching; Soybean Cyst Nematode; Volatile organic compounds.