The development of a highly efficient and stable catalyst for preferential oxidation of CO for the commercialization of proton-exchange membrane fuel cells has been a result of continuous effort. The main challenge is the simultaneous control of abundant active sites and interfacial reducibility over the catalyst CuxO/CeO2. Here, we report a strategy to modulate porosity, active sites, and O-vacancy sites (OV) by reducing media and O2/H2 activation. O2-pretreated CeO2-supported Cu catalysts unequivocally demonstrate the low-temperature activity owing to the excess concentrations of Cu+ and Cu2+ as well as the relative population of Ce3+ and O-vacancy sites at the surface. O2 activation improves the Cu2+ diffusion into the CeO2 lattice to generate the synergistic effect and induces the formation of electron-enriched Cu2+-OV-Ce3+ sites, which accelerate the activation and dissociation of CO/O2 and the formation of reactive oxygen species during catalysis. Density function theory (DFT) calculations reveal that CO adsorbs on Cu2O {110} and CuO {111} with relatively optimal adsorption energy and longer C-Cu lengths in contrast to that on Cu {111}, favoring the adsorption and desorption of CO. These are crucial for ongoing CO oxidation, producing CO2 by the Mars-van Krevelen mechanism.
Keywords: O-vacancy sites; O2/H2 activation; active sites; interfacial reducibility; reducing agent.