Development of improved SRC-3 inhibitors as breast cancer therapeutic agents

Endocr Relat Cancer. 2021 Aug 13;28(10):657-670. doi: 10.1530/ERC-20-0402.

Abstract

Steroid receptor coactivators (SRCs) possess specific and distinct oncogenic roles in the initiation of cancer and in its progression to a more aggressive disease. These coactivators interact with nuclear receptors and other transcription factors to boost transcription of multiple genes, which potentiate cancer cell proliferation, migration, invasion, tumor angiogenesis and epithelial-mesenchymal transition (EMT). Targeting SRCs using small molecule inhibitors (SMIs) is a promising approach to control cancer progression and metastasis. By high-throughput screening analysis, we recently identified SI-2 as a potent SRC SMI. To develop therapeutic agents, SI-10 and SI-12, the SI-2 analogs are synthesized that incorporate the addition of F atoms to the SI-2 chemical structure. As a result, these analogs exhibit a significantly prolonged plasma half-life, minimal toxicity and improved hERG activity. Biological functional analysis showed that SI-10 and SI-12 treatment (5-50 nM) can significantly inhibit viability, migration and invasion of breast cancer cells in vitro and repress the growth of breast cancer PDX organoids. Treatment of mice with 10 mg/kg/day of either SI-10 or SI-12 was sufficient to repress the growth of xenograft tumors derived from MDA-MB-231 and LM2 cells. Furthermore, in spontaneous and experimental metastasis mouse models developed from MDA-MB-231 and LM2 cells, respectively, SI-10 and SI-12 effectively inhibited the progression of breast cancer lung metastasis. These results demonstrate that SI-10 and SI-12 are promising therapeutic agents and are specifically effective in blocking tumor metastasis, a key point in tumor progression to a more lethal state that results in patient mortality in the majority of cases.

Keywords: SI-10; SI-12; breast cancer progression and metastasis; small molecule inhibitor; steroid receptor coactivator.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Epithelial-Mesenchymal Transition
  • Female
  • Humans
  • Mice
  • Nuclear Receptor Coactivator 3 / antagonists & inhibitors
  • Oncogenes
  • Xenograft Model Antitumor Assays*

Substances

  • NCOA3 protein, human
  • Nuclear Receptor Coactivator 3