Field-evolved resistance to chlorpyrifos by Spodoptera frugiperda (Lepidoptera: Noctuidae): Inheritance mode, cross-resistance patterns, and synergism

Pest Manag Sci. 2021 Dec;77(12):5367-5374. doi: 10.1002/ps.6576. Epub 2021 Aug 12.

Abstract

Background: Fall armyworm (FAW), Spodoptera frugiperda (Smith), is an economically important pest worldwide. In this study, we selected a genotype of FAW resistant to chlorpyrifos from a field-collected population, characterized the genetic basis of resistance, and evaluated cross-resistance and mechanisms of resistance using synergists.

Results: The LD50 values of chlorpyrifos for the resistant (Clorp-R) and susceptible (Sus) FAW genotypes were 24.26 and 0.023 μg per larva, respectively, representing a resistance ratio > 1050-fold. The LD50 values of chlorpyrifos against heterozygotes were 3.34 and 4.00 μg per larva, suggesting that resistance is autosomally inherited. The chlorpyrifos resistance in FAW was influenced by few genes, with the minimum numbers of segregations being 1.74 and 1.88. On chlorpyrifos-sprayed plants and leaves, Clorp-R and heterozygote genotypes showed >95% and >52% survival, respectively, whereas the Sus genotype had no survival, indicating that the resistance is incompletely dominant at the field rate of chlorpyrifos. The Clorp-R genotype presented some cross-resistance to acephate, but low cross-resistance to thiodicarb, methomyl, chlorfenapyr, flubendiamide, methoxyfenozide, spinetoram, and teflubenzuron. The synergists piperonyl butoxide, diethyl maleate, and S,S,S-tributyl phosphorotrithiotate did not have relevant effects on the Clorp-R genotype, suggesting a minor role for metabolic resistance.

Conclusions: The inheritance of chlorpyrifos resistance in FAW was characterized as autosomal, incompletely dominant, and polygenic, with metabolic resistance playing a small role in the detoxification of chlorpyrifos. Low cross-resistance between chlorpyrifos and other mode of action (MoA) insecticides occurs in FAW, highlighting the importance of considering the rotation of MoA as a strategy to delay resistance. © 2021 Society of Chemical Industry.

Keywords: acetylcholinesterase inhibitor; fall armyworm; inheritance pattern; resistance management.

MeSH terms

  • Animals
  • Chlorpyrifos* / pharmacology
  • Insecticide Resistance / genetics
  • Insecticides* / pharmacology
  • Larva / genetics
  • Moths*
  • Spodoptera / genetics

Substances

  • Insecticides
  • Chlorpyrifos