Rationale and objectives: A critical performance metric for any quantitative imaging biomarker is its ability to reliably generate similar values on repeat testing. This is known as the repeatability of the biomarker, and it is used to determine the minimum detectable change needed in order to show that a change over time is real change and not just due to measurement error. Test-retest studies are the classic approach for estimating repeatability; however, these studies can be infeasible when the imaging is expensive, time-consuming, invasive, or requires contrast agents. The objective of this study was to develop and test a method for estimating repeatability without a test-retest study.
Materials and methods: We present a statistical method for estimating repeatability and testing whether an imaging method meets a specified criterion for repeatability in the absence of a test-retest study. The new method is applicable for the particular situation where a reference standard is available. A Monte Carlo simulation study was conducted to evaluate the performance of the new method.
Results: The proposed estimator is unbiased, and hypothesis tests with the new estimator have nominal type I error rate and power similar to a test-retest study. We considered the situation where the reference standard provides the true value, as well as when the reference standard itself has various magnitudes of measurement error. An example from CT imaging biomarkers of atherosclerosis illustrates the new method.
Conclusion: Precision of a QIB can be measured without a test-retest study in the situation where a reference standard is available.
Keywords: Quantitative imaging biomarker (QIB); precision; repeatability; test-retest studies.
Copyright © 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.