Neuropathic pain is a chronic condition with little specific treatment. Insulin-like growth factor 1 (IGF1), interacting with its receptor, IGF1R, serves a vital role in neuronal and brain functions such as autophagy and neuroinflammation. Yet, the function of spinal IGF1/IGF1R in neuropathic pain is unclear. Here, we examined whether and how spinal IGF1 signaling affects pain-like behaviors in mice with chronic constriction injury (CCI) of the sciatic nerve. To corroborate the role of IGF1, we injected intrathecally IGF1R inhibitor (nvp-aew541) or anti-IGF1 neutralizing antibodies. We found that IGF1 (derived from astrocytes) in the lumbar cord increased along with the neuropathic pain induced by CCI. IGF1R was predominantly expressed on neurons. IGF1R antagonism or IGF1 neutralization attenuated pain behaviors induced by CCI, relieved mTOR-related suppression of autophagy, and mitigated neuroinflammation in the spinal cord. These findings reveal that the abnormal IGF1/IGF1R signaling contributes to neuropathic pain by exacerbating autophagy dysfunction and neuroinflammation.
Keywords: IGF1; IGF1R; astrocyte; autophagy; mTOR; neuroinflammation; neuropathic pain.