Background and aims: We aimed to develop and validate a deep learning-based system that covers various aspects of early gastric cancer (EGC) diagnosis, including detecting gastric neoplasm, identifying EGC, and predicting EGC invasion depth and differentiation status. Herein, we provide a state-of-the-art comparison of the system with endoscopists using real-time videos in a nationwide human-machine competition.
Methods: This multicenter, prospective, real-time, competitive comparative, diagnostic study enrolled consecutive patients who received magnifying narrow-band imaging endoscopy at the Peking University Cancer Hospital from June 9, 2020 to November 17, 2020. The offline competition was conducted in Wuhan, China, and the endoscopists and the system simultaneously read patients' videos and made diagnoses. The primary outcomes were sensitivity in detecting neoplasms and diagnosing EGCs.
Results: One hundred videos, including 37 EGCs and 63 noncancerous lesions, were enrolled; 46 endoscopists from 44 hospitals in 19 provinces in China participated in the competition. The sensitivity rates of the system for detecting neoplasms and diagnosing EGCs were 87.81% and 100%, respectively, significantly higher than those of endoscopists (83.51% [95% confidence interval [CI], 81.23-85.79] and 87.13% [95% CI, 83.75-90.51], respectively). Accuracy rates of the system for predicting EGC invasion depth and differentiation status were 78.57% and 71.43%, respectively, slightly higher than those of endoscopists (63.75% [95% CI, 61.12-66.39] and 64.41% [95% CI, 60.65-68.16], respectively).
Conclusions: The system outperformed endoscopists in identifying EGCs and was comparable with endoscopists in predicting EGC invasion depth and differentiation status in videos. This deep learning-based system could be a powerful tool to assist endoscopists in EGC diagnosis in clinical practice.
Copyright © 2022 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.