Monte Carlo analyses of the fusion neutron and gamma signals from the chromium self-powered detector

Rev Sci Instrum. 2021 Jun 1;92(6):063307. doi: 10.1063/5.0041086.

Abstract

To test the applicability of self-powered detectors (SPDs) for radiation monitoring in fusion reactor blankets, several irradiation tests have been undertaken with the ad hoc designed Cr-SPD, which presents the novelty of using chromium as the emitter material. This detector was exposed to an intense 60Co gamma-ray source, and to the 14 MeV neutrons produced by the D-T fusion reaction. Detailed analyses of the measured signals have been done here using a Monte Carlo modeling technique. We describe the simulations of the fusion neutron and gamma tests of the Cr-SPD, and compare their results with the experimental ones. Keeping in view the difficulty in computational reproduction of the sophisticated nuclear-electrical phenomena behind low-level SPD signals, our model is found to perform well, giving correct electrical polarities and orders of magnitude of the signals, as well as valuable insights into their different components. Our experience has highlighted the deficits and the needed improvements for the traditional SPD simulation techniques for prompt signal analyses.