During the past decade, genome-wide association studies (GWAS) have transformed our understanding of many heritable traits. Three recent large-scale GWAS meta-analyses now further markedly expand the knowledge on coronary artery disease (CAD) genetics in doubling the number of loci with genome-wide significant signals. Here, we review the unprecedented discoveries of CAD GWAS on low-frequency variants, underrepresented populations, sex differences and integrated polygenic risk. We present the milestones of CAD GWAS and post-GWAS studies from 2007 to 2021, and the trend in identification of variants with smaller odds ratio by year due to the increasing sample size. We compile the 321 CAD loci discovered thus far and classify candidate genes as well as distinct functional pathways on the road to indepth biological investigation and identification of novel treatment targets. We draw attention to systems genetics in integrating these loci into gene regulatory networks within and across tissues. We review the traits, biomarkers and diseases scrutinized by Mendelian randomization studies for CAD. Finally, we discuss the potentials and concerns of polygenic scores in predicting CAD risk in patient care as well as future directions of GWAS and post-GWAS studies in the field of precision medicine.
Keywords: Mendelian randomization; coronary artery disease; genome-wide association study; polygenic risk score; precision medicine; systems genetics.
© 2021 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.