The nearly commensurate charge density wave (CDW) excitations native to the transition-metal dichalcogenide crystal, 1T-TaS2, under ambient conditions are revealed by scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of a graphene/TaS2 heterostructure. Surface potential measurements show that the graphene passivation layer prevents oxidation of the air-sensitive 1T-TaS2 surface. The graphene protective layer does not however interfere with probing the native electronic properties of 1T-TaS2 by STM/STS, which revealed that nearly commensurate CDW hosts an array of vortex-like topological defects. We find that these topological defects organize themselves to form a lattice with quasi-long-range order, analogous to the vortex Bragg glass in type-II superconductors but accessible in ambient conditions.
Keywords: 1T-TaS2; Bragg glass; CDW; STM; graphene; oxidation; topological order.