High-content single-cell combinatorial indexing

Nat Biotechnol. 2021 Dec;39(12):1574-1580. doi: 10.1038/s41587-021-00962-z. Epub 2021 Jul 5.

Abstract

Single-cell combinatorial indexing (sci) with transposase-based library construction increases the throughput of single-cell genomics assays but produces sparse coverage in terms of usable reads per cell. We develop symmetrical strand sci ('s3'), a uracil-based adapter switching approach that improves the rate of conversion of source DNA into viable sequencing library fragments following tagmentation. We apply this chemistry to assay chromatin accessibility (s3-assay for transposase-accessible chromatin, s3-ATAC) in human cortical and mouse whole-brain tissues, with mouse datasets demonstrating a six- to 13-fold improvement in usable reads per cell compared with other available methods. Application of s3 to single-cell whole-genome sequencing (s3-WGS) and to whole-genome plus chromatin conformation (s3-GCC) yields 148- and 14.8-fold improvements, respectively, in usable reads per cell compared with sci-DNA-sequencing and sci-HiC. We show that s3-WGS and s3-GCC resolve subclonal genomic alterations in patient-derived pancreatic cancer cell lines. We expect that the s3 platform will be compatible with other transposase-based techniques, including sci-MET or CUT&Tag.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Chromatin* / genetics
  • DNA / genetics
  • Genome
  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • Mice
  • Sequence Analysis, DNA
  • Single-Cell Analysis / methods
  • Transposases* / genetics
  • Transposases* / metabolism

Substances

  • Chromatin
  • DNA
  • Transposases