Swimming exercise reduces native ⍺-synuclein protein species in a transgenic C. elegans model of Parkinson's disease

MicroPubl Biol. 2021 Jun 29:2021:10.17912/micropub.biology.000413. doi: 10.17912/micropub.biology.000413.

Abstract

Exercise has been historically recommended to prevent many disease conditions. Intense exercise in particular, has been shown to be beneficial for Parkinson's disease (PD) - stopping and even reversing symptoms in some patients. Recent research in mammalian animal models of Parkinson's have shown that exercise affects ⍺-synuclein aggregate species, considered to be a hallmark of PD. However, the exact changes in native ⍺-synuclein protein species after exercise and the downstream effects of exercise upon the health of the animals remains unclear. Recently, it was shown that swimming constitutes a form of exercise in C. elegans worms that confers a protective effect in several worm models of tau and Huntington protein neurodegeneration. Here we show that a period of swimming exercise (Ex) - 15-20 mins - dramatically reduces several native human ⍺-synuclein protein species in the NL5901 C. elegans worm model of Parkinson's. Exercise on Day 1 of adulthood was found to improve motor function measured by the thrashing rate of worms on Day 2 and Day 4 when compared to both control (untreated) and food restricted (FR) worms. Moreover, exercised worms show smaller ⍺-synuclein::YFP puncta than food restricted worms. Here we show that exercise reduces native human ⍺-synuclein levels independent of food restriction in C. elegans.