OS (Osteosarcoma) is the most common malignant tumor in adolescents, and lung metastasis limits its therapeutic outcome. The present study aimed to establish a highly metastatic human OS cell line directly from lung metastases and characterize its biological functions. In this study, epithelioid tumor cells with large nucleo-cytoplasmic ratio and abundant organelles were obtained by the tissue mass adherent and repeated digestion adherent method and named ZOSL-1 cells. ZOSL-1 cells had the potential to proliferate in vitro with a doubling time of 39.28 ± 3.04 h and migrate with or without a matrix. ZOSL-1 cells were tumorigenic in vivo, and had the ability to develop lung metastasis after intratibial injection. ZOSL-1 cells expressed the osteogenic-related genes osteocalcin and osteopontin. In addition, the expression of ZOSL-1 in Fas cell surface death receptor (FAS), CD44 molecule (CD44), GNAS complex locus (GNAS), scavenger receptor class B member 1 (SCARB1), C-X-C motif chemokine receptor 4 (CXCR4), cadherin 11 (CDH11), neurofibromin 2 (NF2) and ezrin (EZR) genes may be related to its transfer efficiency. Taken together, these results indicated the high metastatic capability and important biological functions of ZOSL-1 cells. ZOSL-1 establishment provided a relevant model for the study of osteosarcoma lung metastasis.
Keywords: Osteosarcoma; Pulmonary metastasis; ZOSL-1.
© 2021 The Author(s).