Anodal transcranial direct current stimulation (anodal-tDCS) is known to improve cognition and normalize abnormal network configuration during resting-state functional magnetic resonance imaging (fMRI) in patients with mild cognitive impairment (MCI). We aimed to evaluate the impact of sequential anodal-tDCS on cognitive functions, functional segregation, and integration parameters in patients with MCI, according to high-risk factors for Alzheimer's disease (AD): amyloid-beta (Aβ) deposition and APOE ε4-allele status. In 32 patients with MCI ([18 F] flutemetamol-: n = 10, [18 F] flutemetamol+: n = 22; APOE ε4-: n = 13, APOE ε4+: n = 19), we delivered anodal-tDCS (2 mA/day, five times/week, for 2 weeks) over the left dorsolateral prefrontal cortex and assessed the neuropsychological test battery and resting-state fMRI measurements before and after 2 weeks stimulation. We observed a non-significant impact of an anodal-tDCS on changes in neuropsychological battery scores between MCI patients with and without high-risk factors of AD, Aβ retention and APOE ε4-allele. However, there was a significant difference in brain functional segregation and integration parameters between MCI patients with and without AD high-risk factors. We also found a significant effect of tDCS-by-APOE ε4-allele interaction on changes in the functional segregation parameter of the temporal pole. In addition, baseline Aβ deposition significantly associated negatively with change in global functional integrity of hippocampal formation. Anodal-tDCS might help to enhance restorative and compensatory intrinsic functional changes in MCI patients, modulated by the presence of Aβ retention and the APOE ε4-allele.
Keywords: APOE ε4-allele; amyloid beta deposition; mild cognitive impairment; transcranial direct current stimulation.