Genetic Variability of the SARS-CoV-2 Pocketome

J Proteome Res. 2021 Aug 6;20(8):4212-4215. doi: 10.1021/acs.jproteome.1c00206. Epub 2021 Jun 28.

Abstract

In the absence of effective treatment, COVID-19 is likely to remain a global disease burden. Compounding this threat is the near certainty that novel coronaviruses with pandemic potential will emerge in years to come. Pan-coronavirus drugs-agents active against both SARS-CoV-2 and other coronaviruses-would address both threats. A strategy to develop such broad-spectrum inhibitors is to pharmacologically target binding sites on SARS-CoV-2 proteins that are highly conserved in other known coronaviruses, the assumption being that any selective pressure to keep a site conserved across past viruses will apply to future ones. Here we systematically mapped druggable binding pockets on the experimental structure of 15 SARS-CoV-2 proteins and analyzed their variation across 27 α- and β-coronaviruses and across thousands of SARS-CoV-2 samples from COVID-19 patients. We find that the two most conserved druggable sites are a pocket overlapping the RNA binding site of the helicase nsp13 and the catalytic site of the RNA-dependent RNA polymerase nsp12, both components of the viral replication-transcription complex. We present the data on a public web portal (https://www.thesgc.org/SARSCoV2_pocketome/), where users can interactively navigate individual protein structures and view the genetic variability of drug-binding pockets in 3D.

Publication types

  • Letter
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / pharmacology
  • Antiviral Agents / therapeutic use
  • COVID-19*
  • Humans
  • Pandemics
  • RNA-Dependent RNA Polymerase / genetics
  • SARS-CoV-2*

Substances

  • Antiviral Agents
  • RNA-Dependent RNA Polymerase