Recent advances in high-throughput genomic technologies coupled with exponential increases in computer processing and memory have allowed us to interrogate the complex molecular underpinnings of human disease from a genome-wide perspective. While the deluge of genomic information is expected to increase, a bottleneck in conventional high-performance computing is rapidly approaching. Inspired by recent advances in physical quantum processors, we evaluated several unconventional machine-learning (ML) strategies on actual human tumor data, namely "Ising-type" methods, whose objective function is formulated identical to simulated annealing and quantum annealing. We show the efficacy of multiple Ising-type ML algorithms for classification of multi-omics human cancer data from The Cancer Genome Atlas, comparing these classifiers to a variety of standard ML methods. Our results indicate that Ising-type ML offers superior classification performance with smaller training datasets, thus providing compelling empirical evidence for the potential future application of unconventional computing approaches in the biomedical sciences.
Keywords: The Cancer Genome Atlas; cancer genomics; machine learning.
© 2021 The Authors.