Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment

Theranostics. 2021 Jun 4;11(15):7570-7588. doi: 10.7150/thno.58380. eCollection 2021.

Abstract

Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.

Keywords: Breast cancer; LDHB; RNA therapeutics; metabolism; tumor-associated macrophages..

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Female
  • Humans
  • Isoenzymes / metabolism
  • L-Lactate Dehydrogenase / metabolism*
  • MCF-7 Cells
  • Macrophages / enzymology*
  • Mammary Neoplasms, Animal / metabolism*
  • Mammary Neoplasms, Animal / pathology
  • Tumor Microenvironment*

Substances

  • Isoenzymes
  • L-Lactate Dehydrogenase
  • lactate dehydrogenase 1