Cosmic rays, nuclear accidents, and neutron therapy could be sources for exposure to low-dose fast neutrons. However, the study of low dose effects needs sentient techniques to detect slight alteration happen by this low dose. Herein, the effects of low-dose fast neutrons on the structure of hemoglobin (Hb) using spectroscopic techniques, namely, Fourier transform infrared (FTIR), Raman, and ultraviolet-visible (UV-Vis) spectroscopic. Forty (20 control/20 irradiated) female Wistar rats were used in this work. The irradiated rats were irradiated to low-dose at a total dose of 10 mGy from a fast neutron source (241Am-Be, 0.2 mGy/h). Multivariate analyses were applied to differentiate between the control and irradiated rats' Raman spectra. The erythrocytes samples were isolated from whole blood to explore the Hb structure. FTIR results revealed changes in the ν(S-H) bond of α-104 and β-93 cysteines by low-dose fast neutrons. Raman spectra showed changes in the spin state and oxidation state of the iron atom of the Hb. Besides, deformation in methine C-H was recorded. UV-Vis spectroscopy disclosed that the irradiated rats might be more susceptive to oxidation than control rats. The study deduced that the low dose fast neutron could cause tiny Hb structure changes by indirect effects. Besides, the spectroscopic techniques showed a potent ability to reveal tiny changes in the Hb structure that happened by a low dose of fast neutrons.
Keywords: FTIR; Hemoglobin; Low-dose fast neutrons; Raman; UV–Vis.
Copyright © 2021 Elsevier B.V. All rights reserved.