Accumulation of genetic data in the field of Parkinson's disease research culminated in identifying risk factors and confident prediction of the disease occurrence. To find new gene-targets for diagnostics and therapy we have to reconstruct gene network of the disease, to cluster genes in the network, to reveal key (hub) genes with largest number of interactions in the network. Using the on-line bioinformatics tools OMIM, PANTHER, g:Profiler, GeneMANIA, and STRING-DB, we have analyzed the current array of data related to Parkinson's disease, calculated the categories of gene ontologies for a large list of genes, visualized them, and built gene networks containing the identified key objects and their relationships. However, translating the results into biological understanding is still a promising major challenge. The analysis of the genes associated with the disease, the assessment of their place in the gene network (connectivity) allows us to evaluate them as target genes for medicinal effects.
Nakoplenie geneticheskikh dannykh v oblasti izucheniia bolezni Parkinsona v nastoiashchee vremia sil'no progressiruet ot opredeleniia faktorov riska do uverennogo prognozirovaniia vozniknoveniia zabolevaniia. Dlia poiska novykh misheneĭ terapii neobkhodima rekonstruktsiia gennoĭ seti zabolevaniia, klasterizatsiia genov v seti, vyiavlenie kliuchevykh genov, obladaiushchikh naibol'shim chislom kontaktov v seti. S pomoshch'iu onlaĭn-instrumentov bioinformatiki OMIM, PANTHER, g:Profiler, GeneMANIA i STRING-DB my proanalizirovali aktual'nyĭ na dannyĭ moment massiv dannykh, sviazannykh s bolezn'iu Parkinsona, rasschitali kategorii gennykh ontologiĭ dlia bol'shogo spiska genov, vizualizirovali ikh i postroili gennye seti, soderzhashchie vyiavlennye kliuchevye ob"ekty i ikh vzaimosviazi. Biologicheskaia interpretatsiia poluchennykh rezul'tatov vse eshche ostaetsia slozhnoĭ zadacheĭ. Analiz genov, sviazannykh s bolezn'iu Parkinsona, opredelenie ikh polozheniia v gennoĭ seti (sviazannosti) pozvoliaet otsenit' ikh perspektivnost' v kachestve genov-misheneĭ dlia lekarstvennykh vozdeĭstviĭ.
Keywords: bioinformatics; gene ontology; reconstruction of gene networks.