Evolutionary dynamics of group A and B respiratory syncytial virus in China, 2009-2018

Arch Virol. 2021 Sep;166(9):2407-2418. doi: 10.1007/s00705-021-05139-2. Epub 2021 Jun 15.

Abstract

Respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and is a public health threat globally. To investigate the spatiotemporal dynamics of RSV evolution, we performed systematic phylogenetic analysis using all available sequences from the GenBank database, together with sequences from Shanghai, China. Both RSV-A and RSV-B appear to have originated in North America, with an inferred origin time of 1954.0 (1938.7-1967.6) and 1969.7 (1962.6-1975.5), respectively. BA-like strains of RSV-B, with a 60-nt insertion, and the ON1 strain of RSV-A, with a 72-nt insertion, emerged in 1997.6 (1996.2-1998.6) and 2010.1 (2009.1-2010.3), respectively. Since their origin, both genotypes have gradually replaced the former circulating genotypes to become the dominant strain. The population dynamic of RSV-A showed a seasonal epidemic pattern with obvious expansion in the periods of 2006-2007, 2010-2011, 2011-2012, and 2013-2014. Thirty fixed amino acid substitutions were identified during the divergence of NA4 from GA1 genotypes of RSV-A, and 13 were found during the divergence of SAB4 from GB1 of RSV-B. Importantly, ongoing evolution has occurred since the emergence of ON1, including four amino acid substitutions (I208L, E232G, T253K, and P314L). RSV-A genotypes GA5, NA4, NA1, and ON1 and RSV-B genotypes CB1, SAB4, BA-C, BA10, BA7, and BA9 were co-circulating in China from 2005 to 2015. In particular, RSV-A genotype ON1 was first detected in China in 2011, and it completely replaced GA2 to become the predominant strain after 2016. These data provide important insights into the evolution and epidemiology of RSV.

MeSH terms

  • Child
  • China / epidemiology
  • Genotype
  • Humans
  • Molecular Epidemiology
  • Phylogeny*
  • Respiratory Syncytial Virus Infections / epidemiology
  • Respiratory Syncytial Virus Infections / virology*
  • Respiratory Syncytial Virus, Human / classification*
  • Respiratory Syncytial Virus, Human / genetics*
  • Respiratory Tract Infections / virology