Discovery and Optimization of a Novel 2 H-Pyrazolo[3,4-d]pyrimidine Derivative as a Potent Irreversible Pan-Fibroblast Growth Factor Receptor Inhibitor

J Med Chem. 2021 Jul 8;64(13):9078-9099. doi: 10.1021/acs.jmedchem.1c00174. Epub 2021 Jun 15.

Abstract

Fibroblast growth factor receptors (FGFRs) have become promising therapeutic targets in various types of cancers. In fact, several selective irreversible inhibitors capable of covalently reacting with the conserved cysteine of FGFRs are currently being evaluated in clinical trials. In this article, we optimized and discovered a novel lead compound 36 with remarkable inhibitory effects against FGFR (1-3), which is a derivative of 2H-pyrazolo[3,4-d]pyrimidine. The irreversible binding to FGFRs was characterized by LC-MS. This compound has been shown to exhibit significant anti-proliferation effects against NCI-H1581 and SNU-16 cancer cell lines both in vitro and in vivo. Compound 36 has also demonstrated a low toxicity profile and adequate pharmacokinetic properties and is currently under validation as a potential drug candidate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Drug Screening Assays, Antitumor
  • Female
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Molecular Structure
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrazoles / chemical synthesis
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Pyrimidines / chemical synthesis
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Fibroblast Growth Factor, Type 1 / antagonists & inhibitors
  • Receptor, Fibroblast Growth Factor, Type 1 / metabolism
  • Receptor, Fibroblast Growth Factor, Type 2 / antagonists & inhibitors
  • Receptor, Fibroblast Growth Factor, Type 2 / metabolism
  • Receptor, Fibroblast Growth Factor, Type 3 / antagonists & inhibitors
  • Receptor, Fibroblast Growth Factor, Type 3 / metabolism
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Pyrazoles
  • Pyrimidines
  • FGFR1 protein, human
  • FGFR2 protein, human
  • FGFR3 protein, human
  • Receptor, Fibroblast Growth Factor, Type 1
  • Receptor, Fibroblast Growth Factor, Type 2
  • Receptor, Fibroblast Growth Factor, Type 3