NK and NKT cells have distinct properties and functions in cancer

Oncogene. 2021 Jul;40(27):4521-4537. doi: 10.1038/s41388-021-01880-9. Epub 2021 Jun 12.

Abstract

Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Female
  • Humans
  • Killer Cells, Natural* / immunology
  • Killer Cells, Natural* / metabolism
  • Melanoma, Experimental* / immunology
  • Melanoma, Experimental* / pathology
  • Mice
  • Mice, Inbred C57BL
  • Natural Killer T-Cells* / immunology
  • Natural Killer T-Cells* / metabolism
  • Tumor Microenvironment* / immunology