Extracellular loops of the serotonin transporter act as a selectivity filter for drug binding

J Biol Chem. 2021 Jul;297(1):100863. doi: 10.1016/j.jbc.2021.100863. Epub 2021 Jun 9.

Abstract

The serotonin transporter (SERT) shapes serotonergic neurotransmission by retrieving its eponymous substrate from the synaptic cleft. Ligands that discriminate between SERT and its close relative, the dopamine transporter DAT, differ in their association rate constant rather than their dissociation rate. The structural basis for this phenomenon is not known. Here we examined the hypothesis that the extracellular loops 2 (EL2) and 4 (EL4) limit access to the ligand-binding site of SERT. We employed an antibody directed against EL4 (residues 388-400) and the antibody fragments 8B6 scFv (directed against EL2 and EL4) and 15B8 Fab (directed against EL2) and analyzed their effects on the transport cycle of and inhibitor binding to SERT. Electrophysiological recordings showed that the EL4 antibody and 8B6 scFv impeded the initial substrate-induced transition from the outward to the inward-facing conformation but not the forward cycling mode of SERT. In contrast, binding of radiolabeled inhibitors to SERT was enhanced by either EL4- or EL2-directed antibodies. We confirmed this observation by determining the association and dissociation rate of the DAT-selective inhibitor methylphenidate via electrophysiological recordings; occupancy of EL2 with 15B8 Fab enhanced the affinity of SERT for methylphenidate by accelerating its binding. Based on these observations, we conclude that (i) EL4 undergoes a major movement during the transition from the outward to the inward-facing state, and (ii) EL2 and EL4 limit access of inhibitors to the binding of SERT, thus acting as a selectivity filter. This insight has repercussions for drug development.

Keywords: electrophysiology; kinetics; membrane transport; protein structure; selective serotonin reuptake inhibitor (SSRI); serotonin transporter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence / genetics
  • Animals
  • Binding Sites / drug effects
  • COS Cells
  • Chlorocebus aethiops
  • Dopamine Plasma Membrane Transport Proteins / antagonists & inhibitors
  • Dopamine Plasma Membrane Transport Proteins / genetics*
  • Dopamine Plasma Membrane Transport Proteins / ultrastructure
  • HEK293 Cells
  • Humans
  • Ligands
  • Membrane Transport Proteins / chemistry
  • Membrane Transport Proteins / genetics*
  • Membrane Transport Proteins / ultrastructure
  • Patch-Clamp Techniques
  • Protein Conformation / drug effects*
  • Protein Domains / genetics
  • Selective Serotonin Reuptake Inhibitors / chemistry
  • Selective Serotonin Reuptake Inhibitors / pharmacology*
  • Serotonin / chemistry
  • Serotonin / genetics
  • Serotonin Plasma Membrane Transport Proteins / drug effects
  • Serotonin Plasma Membrane Transport Proteins / genetics*
  • Serotonin Plasma Membrane Transport Proteins / ultrastructure

Substances

  • Dopamine Plasma Membrane Transport Proteins
  • Ligands
  • Membrane Transport Proteins
  • Serotonin Plasma Membrane Transport Proteins
  • Serotonin Uptake Inhibitors
  • Serotonin