For its role in the mediation of myoblast proliferation, fibroblast growth factor receptor 1 (FGFR1) was considered a functional candidate gene for growth performance in Tibetan sheep. Via the polymerase chain reaction-restriction fragment length polymorphism (PCR-PFLP) approach, four single nucleotide polymorphisms (SNPs) including g.14752C > T (intron 1), g.45361A > G (intron 7), g.49400A > G (3'UTR region) and g.49587A > T (3'UTR region), were identified in 422 ewes. The association analysis demonstrated that individuals carrying the AA genotype of g.49400A > G had significantly greater withers height, length than those with GG genotype (p < 0.05). Individuals with genotype AA of g.49587A > T had significantly greater weight and chest circumference than those with genotype TT (p < 0.01). Additionally, the individuals with Hap1/1 diplotypes (CAAA-CAAA) were highly significantly associated with weight and chest circumference than Hap1/2 diplotypes (CAAA-CAAT) (p < 0.05). The quantitative real-time polymerase chain reaction (qPCR) analysis revealed that the FGFR1 was detectable expressed in muscle tissues within three different age stage. Remarkably higher mRNA expression was detected at fetal lamb stage as compared with adult ewes (p < 0.01). The outcome of this research confirmed that both g.49400A > G and g.49587A > T of FGFR1 were involved in growth-related traits, which may be considered to be genetic markers for improving the growth traits of Tibetan sheep.
Keywords: FGFR1; Tibetan sheep; association analysis; expression level; growth-related traits.