Porcine aminopeptidase N (APN), a membrane-bound metallopeptidase abundantly present in small intestinal mucosa, can initiate a mucosal immune response without any interference such as low protein expression, enzyme inactivity, or structural changes. This makes APN an attractive candidate in the development of vaccines that selectively target the mucosal epithelium. Previous studies have shown that APN is a receptor protein for both enterotoxigenic Escherichia coli (E. coli) F4 and transmissible gastroenteritis virus. Thus, APN shows promise in the development of antibody-drug conjugates or novel vaccines based on APN-specific antibodies. In this study, we compared production of APN-specific monoclonal antibodies (mAbs) using traditional hybridoma technology and recombinant antibody expression method. We also established a stably transfected Chinese hamster ovary (CHO) cell line using pIRES2-ZSGreen1-rAbs-APN and an E. coli expression BL21(DE3) strain harboring the pET28a (+)-rAbs-APN vector. The results show that antibodies expressed in pIRES2-ZSGreen1-rAbs-APN-CHO cells and mAbs produced using hybridomas could recognize and bind to the APN protein. This provides the basis for further elucidation of the APN receptor function for the development of therapeutics targeting different APN-specific epitopes.