Opportunistic infections from pathogenic fungi present a major challenge to healthcare because of a very limited arsenal of antifungal drugs, an increasing population of immunosuppressed patients, and increased prevalence of resistant clinical strains due to overuse of the few available antifungals. Cryptococcal meningitis is a life-threatening opportunistic fungal infection caused by one of two species in the Cryptococcus genus, Cryptococcus neoformans and Cryptococcus gattii. Eighty percent of cryptococcosis diseases are caused by C. neoformans that is endemic in the environment. The standard of care is limited to old antifungals, and under a high standard of care, mortality remains between 10 and 30%. We have identified a series of 5-nitro-6-thiocyanatopyrimidine antifungal drug candidates using in vitro and computational machine learning approaches. These compounds can inhibit C. neoformans growth at submicromolar levels, are effective against fluconazole-resistant C. neoformans and a clinical strain of C. gattii, and are not antagonistic with currently approved antifungals.
© 2021 American Chemical Society.