Heavy metals, like many other chemical elements, are naturally present in the environment; however, the concentrations of these metals in various environmental matrices have increased through their intensive use in many human activities (such as industry, mining and agriculture). Among the heavy metals, cadmium (Cd) and mercury (Hg) induce a wide variety of defects in animals. While the effects of these heavy metals have been widely documented, a single exposure paradigm is typically used. Few studies have focused on evaluating combined exposure to these metals. However, in the environment, animals are confronted with a plethora of substances simultaneously; thus, the presence and origin of such substances must be determined to reduce the sources of contamination. Using the model of the fruit fly Drosophila melanogaster, for which many tools are readily available, we investigated how different concentrations of Cd and Hg in single and combined exposures impact post-embryonic development. In parallel, we evaluated the extended expression pattern of 38 molecular targets used as potential biomarkers of exposure through qPCR. Our results showed that both metals caused developmental delays and mortality in dose-dependent responses. Both metals were able to deregulate genes involved in hormonal control, general stress, and oxidative stress. Importantly, we confirmed synergistic interactions between Cd and Hg. Our results indicate the importance of assessing several biomarkers and their kinetics in mixtures. Drosophila represents a useful model for monitoring the toxicity of substances in polluted environments.
Keywords: Gene expression; Heavy metals; Insect; Mixture; Sublethal concentration; Wastewater; qPCR.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.