Actin is one of the most abundant eukaryotic cytoskeletal polymer-forming proteins, which, in the filamentous form, regulates a number of physiological processes, ranging from cell division and migration to development and tissue function. Actins have different post-translational modifications (PTMs) in different organisms, including methionine, alanine, aspartate and glutamate N-acetylation, N-arginylation and the methylation of the histidine at residue 73 (His-73), with different organisms displaying a distinct signature of PTMs. Currently, methods are not available to produce actin isoforms with an organism-specific PTM profile. Here, we report the Pick-ya actin method, a method to express actin isoforms from any eukaryote with its own key characteristic PTM pattern. We achieve this using a synthetic biology strategy in a yeast strain that expresses, one, actin isoforms with the desired N-end via ubiquitin fusion and, two, mammalian enzymes that promote acetylation and methylation. Pick-ya actin should greatly facilitate biochemical, structural and physiological studies of the actin cytoskeleton and its PTMs.
Keywords: Actin cytoskeleton; Pichia pastoris; Post-translational modification; Recombinant actin.
© 2020. Published by The Company of Biologists Ltd.