Purpose: To determine the regulatory role of E2F1 in maintaining gastric cancer stemness properties and the clinical significance of E2F1 in gastric cancer.
Materials and methods: We conducted a tumor spheroid formation assay to enrich gastric cancer stem-like cells. The protein and mRNA expression levels of genes were measured using Western Blot and qRT-PCR. Lentivirus-mediated overexpression and downregulation of E2F1 were performed to evaluate the effect of E2F1 on the stemness properties of gastric cancer cells. The effect of E2F1 on gastric cancer cell sensitivity of 5-Fu was evaluated using cell viability assay and TdT-mediated dUTP Nick-End Labeling staining. We also analyzed the association between E2F1 expression and clinical characteristics in gastric cancer patients. The KM plotter database was used to analyze the relationship between E2F1 and overall survival in GC patients.
Results: We found that E2F1 expression was significantly higher in gastric cancer tissues than in the paired adjacent normal tissues (p < 0.05) and was positively correlated with tumor size (p < 0.05), T stage (p < 0.05), and differentiation degree (p < 0.05). KM plotter database demonstrated a close association between higher E2F1 expression level and worse overall survival of gastric cancer patients (p < 0.05). In vitro assay illustrated that E2F1 could regulate the expression of stemness-associated genes, such as BMI1, OCT4, Nanog, and CD44, and maintain the tumor spheroid formation ability of gastric cancer cells. E2F1 enhanced 5-Fu resistance in gastric cancer cells, and the E2F1 expression level was correlated with the prognosis of gastric cancer patients receiving 5-Fu therapy. The expression levels of stemness-associated genes were also significantly higher in gastric cancer tissues than the paired adjacent normal tissues (p < 0.05). A positive correlation was observed between E2F1 and BMI1 (r = 0.422, p < 0.05), CD44 (r = 0.634, p < 0.05), OCT4 (r = 0.456, p < 0.05), and Nanog (r = 0.337, p < 0.05) in gastric cancer tissues. The co-overexpression of E2F1 and stemness-associated genes was associated with worse overall survival.
Conclusion: E2F1 plays a significant role in gastric cancer progression by maintaining gastric cancer stemness properties through the regulation of stemness-associated genes. The close association between E2F1 and poor prognosis of patients suggests that E2F1 could serve as a prognostic biomarker and a therapeutic target in gastric cancer patients.
Copyright © 2021 Yan Fu et al.