Context: Hepatic encephalopathy (HE) is a complex neuropsychiatric disease caused by liver failure. Dihydromyricetin (DMY) is a traditional medicine used to treat liver injury.
Objective: To investigate the effects of dihydromyricetin (DMY) on hepatic encephalopathy associated with acute hepatic failure mice models established by thioacetamide (TAA) exposure.
Materials and methods: Female BALB/c mouse were randomly divided into control, DMY, TAA, and TAA + DMY groups (n = 8). The first two groups were intraperitoneally injected with saline or 5 mg/kg DMY, respectively. The last two groups were injected with 600 mg/kg TAA to establish HE models, and then the mice in the last group were treated with 5 mg/kg DMY. Neurological and cognition functions were evaluated 24 and 48 h after injection. Mice were sacrificed after which livers and brains were obtained for immunoblot and histopathological analysis, while blood was collected for the analysis of liver enzymes.
Results: In the TAA + DMY group, ALT and AST decreased to 145.31 ± 12.88 U/L and 309.51 ± 25.92 U/L, respectively, whereas ammonia and TBIL decreased to 415.67 ± 41.91 μmol/L and 3.31 ± 0.35 μmol/L, respectively. Moreover, MDA decreased to 10.74 ± 3.97 nmol/g, while SOD and GST increased to 398.69 ± 231.30 U/g and 41.37 ± 21.84 U/g, respectively. The neurological score decreased to 2.87 ± 0.63, and the number of GFAP-positive cells decreased to 41.10 ± 1.66. Furthermore, the protein levels of TNF-α, IL-6, and GABAA in the cortex decreased.
Conclusions: We speculate that DMY can serve as a novel treatment for HE.
Keywords: GABAA receptor; Thioacetamide; cognition functions; glial fibrillary acidic protein; liver enzymes.