Background: Pseudorabies virus (PRV) is a preferred vector for recombinant vaccine construction. Previously, we generated a TK&gE-deleted PRV (PRVΔTK&gE-AH02) based on a virulent PRV AH02LA strain. It was shown to be safe for 1-day-old piglets with maternal PRV antibodies and 4 ~ 5 week-old PRV antibody negative piglets and provide rapid and 100 % protection in weaned pigs against lethal challenge with the PRV variant strain. It suggests that PRVTK&gE-AH02 may be a promising live vaccine vector for construction of recombinant vaccine in pigs. However, insertion site, as a main factor, may affect foreign gene expression.
Results: In this study, we constructed four recombinant PRV-S bacterial artificial chromosomes (BACs) carrying the same spike (S) expression cassette of a variant porcine epidemic diarrhea virus strain in different noncoding regions (UL11-10, UL35-36, UL46-27 or US2-1) from AH02LA BAC with TK, gE and gI deletion. The successful expression of S gene (UL11-10, UL35-36 and UL46-27) in recombinant viruses was confirmed by virus rescue, PCR, real-time PCR and indirect immunofluorescence. We observed higher S gene mRNA expression level in swine testicular cells infected with PRV-S(UL11-10)ΔTK/gE and PRV-S(UL35-36)ΔTK/gE compared to that of PRV-S(UL46-27)ΔTK/gE at 6 h post infection (P < 0.05). Moreover, at 12 h post infection, cells infected with PRV-S(UL11-10)ΔTK/gE exhibited higher S gene mRNA expression than those infected with PRV-S(UL35-36)ΔTK/gE (P = 0.097) and PRV-S(UL46-27)ΔTK/gE (P < 0.05). Recovered vectored mutant PRV-S (UL11-10, UL35-36 and UL46-27) exhibited similar growth kinetics to the parental virus (PRVΔTK&gE-AH02).
Conclusions: This study focuses on identification of suitable sites for insertion of foreign genes in PRV genome, which laids a foundation for future development of recombinant PRV vaccines.
Keywords: Bacterial artificial chromosome; Insertion site; Noncoding region; Pseudorabies virus; Spike gene.