Early disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.
Keywords: centralized detection; disease diagnosis; microfluidic paper-based devices; microsampling; open analytical systems; point-of-care; portable analytical systems.