Mechanistic pathways relevant to mineralization are not well-understood fundamentally, let alone in the context of their biological and geological environments. Through quantitative analysis of ion association at near-neutral pH, we identify the involvement of HCO3- ions in CaCO3 nucleation. Incorporation of HCO3- ions into the structure of amorphous intermediates is corroborated by solid-state nuclear magnetic resonance spectroscopy, complemented by quantum mechanical calculations and molecular dynamics simulations. We identify the roles of HCO3- ions as being through (i) competition for ion association during the formation of ion pairs and ion clusters prior to nucleation and (ii) incorporation as a significant structural component of amorphous mineral particles. The roles of HCO3- ions as active soluble species and structural constituents in CaCO3 formation are of fundamental importance and provide a basis for a better understanding of physiological and geological mineralization.
Keywords: NMR spectroscopy; amorphous materials; bicarbonate; calcium carbonate; mineral nucleation.
© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.