Imported malaria has become a major risk factor for malaria prevention and control in China. How to screen malaria quickly for people entering China is an urgent problem to be solved. Protein microarrays are widely used in high-throughput screening and diagnosis. In this study, surface plasmon resonance (SPR) technique for malaria detection was established by using the specific adsorption surface treated by polyethylene glycol polymer, and the malaria specific antigen HRP2 was used as capture probe. The optimal concentration of antigen, sensitivity and specificity of detection, as well as anti-interference ability of the chip were analyzed. The SPR protein chip was applied to detect specific antibodies of malignant malaria in serum with the advantage of label-free, instant and fast. Compared with fluorescence quantitative PCR, there were no significant difference in sensitivity and specificity between the two methods. This study lays a foundation for further development of protein microarray for malaria typing identification, and it is conducive to the rapid screening of malaria for people entering.
输入性疟疾已是我国疟疾防控的主要危险因素,如何对入境人员进行疟疾快速筛查是急需解决的难题。蛋白质芯片已被广泛应用于高通量筛选和诊断,本研究尝试构建了表面等离子共振技术 (Surface plasmon resonance,SPR) 蛋白芯片用于恶性疟疾的快速检测。采用聚乙二醇高分子处理的特异性吸附表面,以恶性疟疾特异性抗原富组氨酸蛋白Ⅱ (Histidine-rich protein Ⅱ,HRP2) 作为捕获探针,建立疟疾的微阵列芯片,并对芯片的最佳抗原固定浓度,检测的灵敏性和特异性,以及抗干扰能力进行了分析。该芯片可成功应用于恶性疟疾的筛查,具有无标记、即时快速的特点,与荧光定量PCR法相比,两种方法在敏感度和特异性方面无统计学差异。研究结果为一步研制疟疾分型鉴定蛋白质芯片奠定了基础,有利于对入境人员进行疟疾快速筛查。.
Keywords: malaria; protein chip; screening; surface plasmon resonance.