Strain sensors fabricated by surface assembly of nanoparticles

Biosens Bioelectron. 2021 Aug 15:186:113268. doi: 10.1016/j.bios.2021.113268. Epub 2021 May 1.

Abstract

Harnessing interparticle spatial properties of surface assembly of nanoparticles (SAN) on flexible substrates is a rapidly emerging front of research in the design and fabrication of highly-sensitive strain sensors. It has recently shown promising potentials for applications in wearable sensors and skin electronics. SANs feature 3D structural tunability of the interparticle spatial properties at both molecular and nanoscale levels, which is transformative for the design of intriguing strain sensors. This review will present a comprehensive overview of the recent research development in exploring SAN-structured strain sensors for wearable applications. It starts from the basic principle governing the strain sensing characteristics of SANs on flexible substrates in terms of thermally-activated interparticle electron tunneling and conductive percolation. This discussion is followed by descriptions of the fabrication of the sensors and the proof-of-concept demonstrations of the strain sensing characteristics. The nanoparticles in the SANs are controllable in terms of size, shape, and composition, whereas the interparticle molecules enable the tunability of the electrical properties in terms of interparticle spatial properties. The design of SAN-derived strain sensors is further highlighted by describing several recent examples in the explorations of their applications in wearable biosensor and bioelectronics. Fundamental understanding of the role of interparticle spatial properties within SANs at both molecular and device levels is the focal point. The future direction of the SAN-derived wearable sensors will also be discussed, shining lights on a potential paradigm shift in materials design in exploring the emerging opportunities in wearable sensors and skin electronics.

Keywords: Intermolecular interactions; Interparticle spatial properties; Metal nanoparticles; Strain sensors; Surface assembly; Wearable sensors.

Publication types

  • Review